Lossless

2 Source Coding

In this section, we look at the “source encoder” part of the system. This
part removes redundancy from the message stream or sequence. We will
focus only on [Bifi@#§isource coding.

2.1. The material in this section is based on [C & T Ch 2, 4, and 5].

2.1 General Concepts

Example 2.2. Suppose your message is a paragraph of (written natural)
text in English.

e Approximately 100 possibilities for characters/symbols.

o For example, a character-encoding scheme called (ASCII) (Amer-
ican Standard Code for Information Interchange) originallyﬂ had
128 specified characters — the numbers 0-9, the letters a—z and
A-7, some basic punctuation Symbolﬂ and a blank space.

e Do we need 7 bits per characters?

Fer o orcq o L vt {00 cha ractere we wou\c\ hopd #x100
f 'a ~)

2.3. A sentence of English—or of any other language—always has more infor-
mation than you need to decipher it. The meaning of a message can remain
unchanged even though parts of it are removed.

Example 2.4.
e “J-st tr- t- r—d th-s s-nt-nc-.” [

e “Thanks to the redundancy of language, yxx cxn xndxrstxnd whxt x
xm wrxtxng xvxn xf x rxplxex xIl thx vxwxls wxth xn 'x’ (t gts lttl

hrdr f y dn’t vn kn whr th vwls 1).” [

'Being American, it didn’t originally support accented letters, nor any currency symbols other than the
dollar. More advanced Unicode system was established in 1991.

2There are also some control codes that originated with Teletype machines. In fact, among the 128
characters, 33 are non-printing control characters (many now obsolete) that affect how text and space are
processed and 95 printable characters, including the space.

3Charles Seife, Decoding the Universe. Penguin, 2007

4Steven Pinker, The Language Instinct: How the Mind Creates Language. William Morrow, 1994

= '?-OO
bits

2.5. It is estimated that we may only need about 1 bits per character in
English text. Simr\i [ied wodel og +he soorce

Definition 2.6. Discrete Memoryless Sources (DMS): Let us be more
specific about the information source.

e The message that the information source produces can be represented
by a vector of characters X, Xo,...,X,,.

o A perpetual message source would produce a never-ending sequence
of characters Xy, Xo,....

e These X}’s are random variables (at least from the perspective of the
decoder; otherwise, these is no need for communication).

e For simplicity, we will assume our source to be discrete and memoryless.

o Assuming a discrete source means that the random variables are all
discrete; that is, they have supports which are countable. Recall
that “countable” means “finite” or “countably infinite”.

* We will further assume that they all share the same support
and that the support is finite. This support is called the source
alphabet.

o Assuming a memoryless source means that there is no dependency
among the characters in the sequence.

*x More specifically,

PX1,Xo0 X (T1, T2, -, Tp) = Px, (21) X Px, (T2) X -+ X px, (Tn).

(1)

*x This means the current model of the source is far from the

source of normal English text. English text has dependency

among the characters. However, this simple model provide a
good starting point.

x We will further assume that all of the random variables share
the same probability mass function (pmf). We denote this
shared pmf by py(z). In which case, becomes

le,Xg,...,X"(xla L2y ,$n) = pX(ZL“1) XPX($2) X 'XPX(ZUn)- (2)

- We will also assume that the pmf py(z) is known. In prac-
tice, there is an extra step of estimating this px(z).
- To save space, we may see the pmf px(z) written simply as
p(x), i.e. without the subscript part.
* The shared support of X which is usually denoted by Sx be-

comes the source alphabet. Note that we also often see the use
of X to denote the support of X.

e In conclusion, our simplified source code can be characterized by a
random variable X. So, we only need to specify its pmf px ().

Example 2.7. See slides. i
(source) mapprn
Definition 2.8. An encoder c(-) is a'function that maps each of the char-

acter in the (source) alphabet into a corresponding (binary) codeword.

. X . .
e In particular, the codeword corresponding to a source character x is
denoted by c(z).

e Each codeword is constructed from a code alphabet.
o A binary codeword is constructed from a two-symbol alphabet,

wherein the two symbols are usually taken as 0 and 1.

o It is possible to consider non-binary codeword. Morse code dis-
cussed in Example [2.13]is one such example.

c or_lb symlr:m\

e Mathematically, we write l
Encoder ¢ : Sy *
where source ol Plnq‘oc;\‘ tode a) 'ol—\a.Le."r

{0,1}* = {e,0,1,00,01, 10, 11, 000, 001, 010, 011, ...}

is the set of all finite-length binary strings.

sowrce shi:xj ene oded ¢;+r:q3

DHS—-—I'XX X, X ——’lchcodcf——>cLX,)c(X,)c(X3)

\rL/ ~ Pxl®) cC)

e The length of the Codeword associated with source character x is de-
noted by ¢(x).

o In fact, writing this as ¢ (¢(z)) may be clearer because we can see
that the length depends on the choice of the encoder. However, we
shall follow the notation above?l

Example 2.9. c(red) = 00, ¢(blue) = 11 is a source code for Sy =
{red, blue}.

Example 2.10. Suppose the message is a sequence of basic English words

which happen according to the probabilities provided in the table below.
/Nai\’f. CbA\‘ﬂj

x p(z) Codeword c(x) | £(x)
Yes 4% oo 2
No 3% o1 Z
OK 90% 10 2
Thank You | 3% 11 2

Definition 2.11. The expected length of a code ¢(-) for a source which is
characterized by a random variable X with probability mass function px (z)
is given by

E[X)]) =) px(2)i(2).

TESY

Example 2.12. Back to Example [2.10, Consider a new encoder:

x p(z) | Codeword c(x) | ¢(x) IE[ZLX)] £ 0.0%x2 +06.03x3
Yes 4% 01 2 F o0 x4 s 0.0 et
No 3% 001 3 ‘
OK 90% 1 1 = A [4x2 +3%3 +90 +3x%)
Thank You | 3% 0001 L loe
001 01 0w Pbserve the following: =1.19 bits (per symbol)

e Data compression can be achieved by assigning short descriptions to
the most frequent outcomes of the data source, and necessarily longer
descriptions to the less frequent outcomes.

e When we calculate the expected length, we don’t really use the fact
that the source alphabet is the set {Yes, No, OK, Thank You}. We
would get the same answer if it is replaced by the set {1,2,3,4}, or the

Swhich is used by the standard textbooks in information theory.

10

set {a, b, c,d}. All that matters is that the alphabet size is 4, and the
corresponding probabilities are {0.04,0.03,0.9,0.03}.

Therefore, for brevity, we often find DMS source defined only by its
alphabet size and the list of probabilities.

Example 2.13. The Morse code is a reasonably efficient code for the En-
glish alphabet using an alphabet of four symbols: a dot, a dash, a letter
space, and a word space. [See Slides]

e Short sequences represent frequent letters (e.g., a single dot represents

E) and long sequences represent infrequent letters (e.g., Q is represented
by “dash,dash,dot,dash”).

Example 2.14. Thought experiment: Let’s consider the following code

z | p(z) | Codeword c¢(z) | {(z)

1| 4% 0 1

2| 3% 1 1 IE[M"’J =1

31 90% 0 1 Not non-sincular
4 3% 1 1 J

This code is bad because we have ambiguity at the decoder. When a
codeword “0” is received, we don’t know whether to decode it as source
symbol “1” or source symbol “3”. If we want to have lossless source coding,
this ambiguity is not allowed.

Definition 2.15. A code is nonsingular if revery source symbol in the
source alphabet has different codeword.

As seen from Example [2.14, nonsingularity is an important concept.
However, it turns out that this property is not enough.

Example 2.16. Another thought experiment: Let’s consider the following
code

z | p(z) | Codeword c¢(z) | {(z)
1| 4% 01 2]F_[l(_XJ]: O.C41x2 +0.0%%x17
21 3% 010 3 +0.90x1 4 0.03 %2
31 90% 0 1
41 3% 10 2 =1.13 lpi‘\'s (re.f r)fmloa\)
LO, 10 " Not+ UD
o
010 \01, Nok Prc.{:;x--‘:mg = Not
010 rovt.{'ix

code

2.17. We usually wish to convey a sequence (string) of source symbols. So,
we will need to consider concatenation of codewords; that is, if our source
string is

X1, X5, X3, ...

then the corresponding encoded string is

c(X1)qc(X2)yc(X3)a - - .
In such cases, to ensure decodability, we may "° “‘f“m*-or\»
(a) use fixed-length code, or
(b) use variable-length code and

(i) add a special symbol (a “comma” or a “space”) between any two
codewords

or

(ii) use uniquely decodable codes.

Definition 2.18. A code is called uniquely decodable if any encoded
string has only one possible source string producing it.

Example 2.19. The code used in Example is not uniquely decodable
because source string “2”, source string “34”, and source string “13” share
the same code string “010”.

2.20. It may not be easy to check unique decodability of a code. Also,
even when a code is uniquely decodable, one may have to look at the entire
string to determine even the first symbol in the corresponding source string.
Therefore, we focus on a subset of uniquely decodable codes called prefix
code.

Definition 2.21. A code is called a prefix code if no codeword is a prefix{’|
of any other codeword.

e Equivalently, a code is called a prefix code if you can put all the
codewords into a binary tree were all of them are leaves.

6String s, is a prefix of string sy if there exist a string s3, possibly empty, such that sy = s;53.

12

e A more appropriate name would be “prefix-free” code.

Example 2.22. The code used in Example is a prefix code.

x | Codeword c¢(x)
1 01

2 001

3 1

4 0001

Example 2.23.

x | Codeword c¢(x) 2 o:o:“ 041011110010
) I |

1 10

2 110

3 0 111

4 111

2.24. Any prefix code is uniquely decodable.

e The end of a codeword is immediately recognizable.

e Each source symbol can be decoded as soon as we come to the end of
the codeword corresponding to it. In particular, we need not wait to
see the codewords that come later.

e [t is also commonly called an instantaneous code

Example 2.25. The code used in Example (and Example 2.22)) is a
prefix code and hence it is uniquely decodable.

2.26. The nesting relationship among all the types of source codes is shown
in Figure [2]

Example 2.27.

x | Codeword c¢(x)

1 P 1 joo10cc 1011000 ..
2 o 10

3 % {00O

4 G 1000

13

All codes

Nonsingular codes

Figure 2: Classes of codes

Example 2.28. [1, p 106-107]

x | Codeword c(x)
1 10
2 00
3 11
4 110

This code is not a prefix code because codeword “11” is a prefix of code-
word “110”.

This code is uniquely decodable. To see that it is uniquely decodable,
take any code string and start from the beginning.

e If the first two bits are 00 or 10, they can be decoded immediately.
e If the first two bits are 11, we must look at the following bit(s).

o If the next bit is a 1, the first source symbol is a 3.

o If the length of the string of 0’s immediately following the 11 is
even, the first source symbol is a 3.

o If the length of the string of 0’s immediately following the 11 is
odd, the first codeword must be 110 and the first source symbol
must be 4.

By repeating this argument, we can see that this code is uniquely decodable.

14

